

VAVTROL一DN<电子控制调节阀>

「如今, 阀门也有了大脑。」

搭载微型电脑的高性能阀门

- 数字控制、更可靠,操作更好的阀门。
- 在现场很容易进行设定变更。
- 通过1:100以上的高分解度,可以得到稳定控制的效果。

数字控制特点

数字控制,更可靠,操作性更好的阀门

可以10%为单位调整控制阀的开度。通过以实际流量为基准进行调节,可得到更高的控制性。

可在不产生设定时信号误差情况下进行设定 值管理,所以可进行更有效地维修。

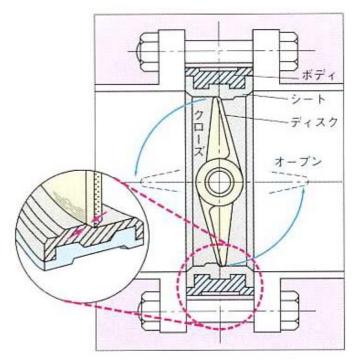
可在现场处理的功能

在现场,可通过线路板上的触点开关进行下列设定的变更。

■ 阀动作

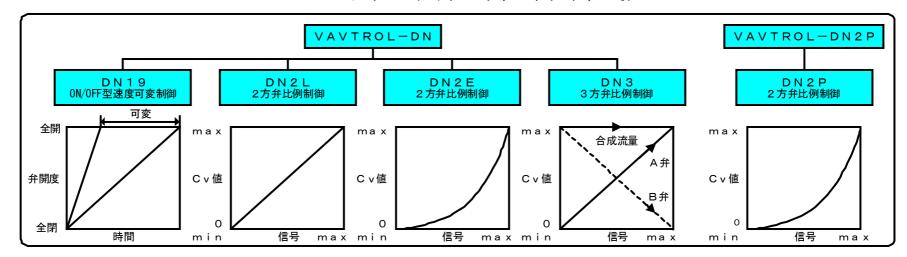
逆动作=「信号增,全开」

正动作=「信号增,全闭」切换

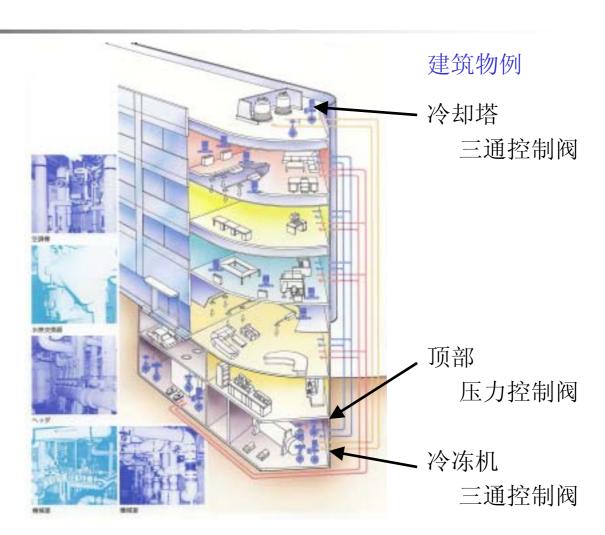

■联锁

通过触点开关可进行阀全开或全闭的切换。

可稳定控制的碟阀


- 由于采用了不锈钢阀板和橡胶阀座,所以不会生锈。
- 通过1:100以上的高分解度可 进一步扩大控制范围。高性能特性,可得到安定的控制
- 耐磨损,长寿命的设计。

对应于控制规格的系列内容


- DN2E-2通阀比例控制 Eq%特性
- DN2L-2通阀比例控制 直线特性
- DN3-3通阀比例控制
- DN19-ON/OFF速度可变控制
- DN2P-2通阀比例控制 抑制气穴

使用用途

- 建筑物空调
- 工厂设备
- 研究设施

驱动部通用规格

电源电压	AC220V(50H z)
动作开度	比例控制70°、0N/0FF控制90°
中间限位输出	开侧,闭侧 各1个
过负荷限位输出	闭侧 1个
外壳保护条件	I P 6 6
手动操作机构	装有手动操作手轮
空间加热器	5 W 内藏
电线管口	G1/2-2个、G3/4-1个

中间限位开关的选定

在中间限位输出用的限位开关里,也有可对应于微弱信号的型号,请根据用途进行选择。

标准信号用		标准信号用	微弱负荷用
	定 额	AC250V - 11A	AC125V — 0. 1A
AC250V 电 AC250V 流 DC30V DC 5V	AC250V	11A (7A) \sim 50mA	使用不可
	AC250V	11A (7A) \sim 50mA	100mA \sim 1mA
	DC30V	6A \sim 50mA	100mA \sim 1mA
	DC 5V	11A \sim 50mA	100mA \sim 1mA

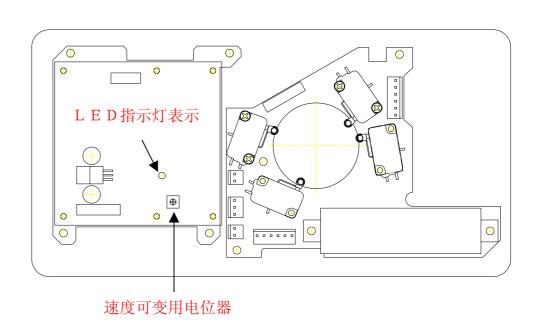
上记电流值为阻抗负荷时的电流值。()内为感应负荷时的电流值。

控制部说明<比例控制型>

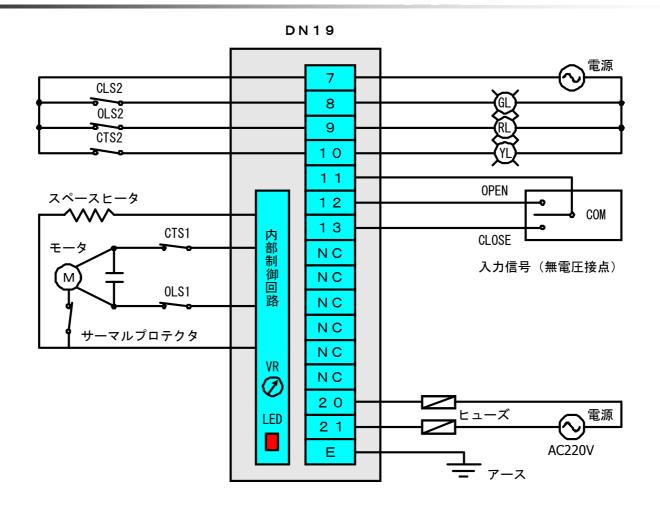
输入信号	DC4-20mA, DC1-5V
输出信号	DC4-20mA(阀开度成比例)
联锁	开、关(D_SW设定)、停止、任意开度(电脑设定)
阀动作设定	正动作、逆动作(D_SW设定)
最大・最小开度设定	在阀动作范围内可以设定(电脑设定)
不感带设定	±0.2~10.0% <fl>(电脑设定)</fl>
动作速度设定	不同范围(3个地方)设定开关速度(电脑设定)
子母通信机能	连续通信(DN3)

比例控制型的标准回路

DN2L/DN2E/(DN3)



控制部说明<0N/0FF速度可变控制型> DN19


输入信号	COM、OPEN、CLOSE(无电压触点)
动作速度设定	速度可变用电位器 < 无极 > (端子盒内)
动作表示	LED指示灯表示(端子盒内)

缓慢的流量变动, 可防止水锤,提高 热效率。对设备 起动时很有益。

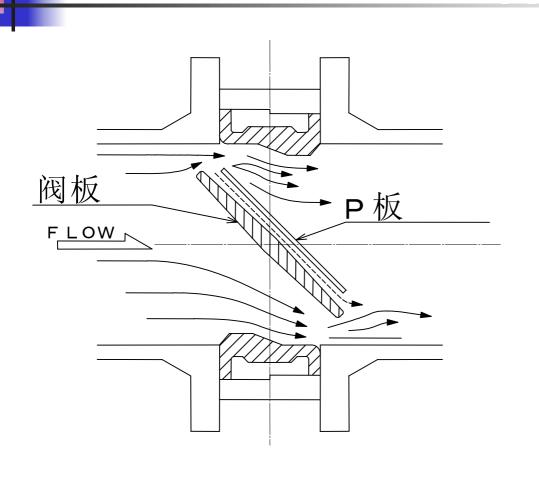
ON/OFF速度可变控制型的标准回路

有关气穴

- 因为阀板遮挡了水流,阀下流侧的压力降低, 从而引起气穴。
- 发出噪声及震动,对管道产生不良影响。

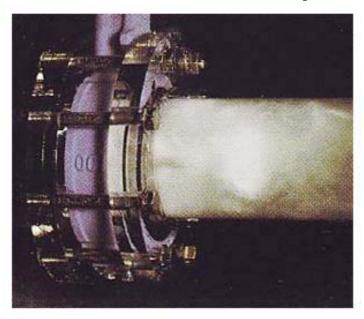
DN2P一气穴抑制型

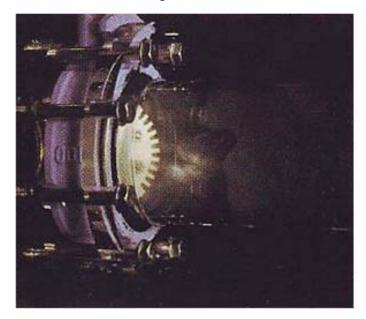
在阀本体内安装 "P板",防止压力急速下降, 从而抑制气穴的发生。


D N 2 P

<u>P板</u>

抑制气穴构造




由于在阀板边缘 后方设计了P板, 打碎了阀体后方的 喷射流,从而抑制 了气穴的发生。

气穴的抑制

标准和抑制型的比较(本公司自身比较)

通过计算可预测气穴的发生,欢迎垂询。